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Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and
equation of state calculations. Although such models have to be derived from variational principles, up to now
existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem
is proposed—all variables are variational except the parameters defining the equilibrium, i.e., the temperature
T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi �TF�
atom, the quantum average atom �QAA�, and the superconfigurations �SC� in plasmas. Both the self-consistent-
field �SCF� equations for the electronic structure and the condition for the mean ionization Z* are found from
minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the
plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy
per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0=Z*ni occupying
the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is
assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz
�WS� cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is
unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside.
The first-order contribution to free energy per ion is the difference between the free energy of the system
“central ion+infinite plasma” and the free energy of the system “infinite plasma.” An important part of the
approach is an “ionization model” �IM�, which is a relation between the mean ionization charge Z* and the
first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure.
The correct IM in the TF case is found to be Z−Z*=�d3r�n�r��−n0�, where n�r�� is the first-order electron
density. It is shown that in the QAA case the same IM has to be used and that other IMs lead to unphysical
solutions. With this IM R becomes in both cases �TF and QAA� equal to the WS radius and the variational
calculation leads to SCF equations in an infinite plasma while n0 �or equivalently Z*� is to be found from the
condition �d3r ��r−R�Vel�r��=0, where � denotes Heaviside function and Vel�r�� is the SCF electrostatic poten-
tial. In the SC case results are similar except that averages over all superconfigurations appear. In the TF case
the condition for n0 gives the neutrality of the WS sphere and one gets the classical TF ion-in-cell average
atom. The situation is different in the QAA and in the SC cases in which the cavity is not neutral and the SCF
potential Vel�r�� is not zero outside the cavity. Due to the fully variational character of our approach the
expression for the thermodynamic pressure in all cases does not require any numerical differentiation and is
consistent with the virial theorem.
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I. INTRODUCTION

Models of atoms or ions in plasmas are of interest for
inertial fusion, for astrophysical plasmas, and for laboratory
hot dense plasmas. This remark especially concerns plasmas
in which part of the electrons remains bound to the ions. This
is practically always the case in plasmas containing medium
or high Z elements. As is well known, medium Z atoms like
iron still have bound electrons even at conditions corre-
sponding to plasmas at the center of the Sun. The importance
of bound electrons results from their dominant role in pho-
toabsorption and the emission of radiation in plasmas. In
such a way bound electrons are also responsible for the
dominant radiative energy transfer in hot dense plasmas.

The aim of the paper is to formulate fully variational
models of quantum average atom �see, for instance, Refs.

�1–3�� and superconfigurations �4–6� in plasmas at finite
temperature. Such models are needed in order to correctly
treat plasma thermodynamics. This is important for plasma
equation of state �EOS� and also for other applications such
as plasma opacity calculations.

The first approach to the atom in the plasma problem was
based on the finite temperature Thomas-Fermi �TF� model
�1�. This TF model in which the atom was confined in the
Wigner-Seitz �WS� sphere �ion-cell model� was inspired in
large part by models used in solid-state physics �2�. The TF
model of Ref. �1� yields a consistent EOS, i.e., a simple
expression for the thermodynamic pressure due to electrons.
As shown in Ref. �1� the TF model respects exactly the virial
theorem. This is connected to the fully variational character
of the model and to its correct scaling properties �1�. The
equilibrium is uniquely determined by three parameters of
the plasma: the matter �ion� density ni, the temperature T,
and the atomic number of plasma atoms, Z. The ion density
is related simply to the WS radius by the relation RWS
= �3/ �4�ni��1/3.
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A first comprehensive quantum extension of the average
atom was the model proposed by Rozsnayi �3�. In the self-
consistent-field �SCF� calculation presented in Ref. �3�
bound electrons are treated quantum mechanically, i.e., via
the Schrödinger equation while the free electrons are still
quasiclassical, i.e., described as a TF fluid. The problem with
Ref. �3� is that that model is not supported by a variational
derivation. Moreover, the TF approach to free electrons in
Ref. �3� cannot lead to the correct treatment of pressure ion-
ization �7,8� that occurs when bound states disappear and are
compensated by resonances in the continuum. Such reso-
nances have to be found from a SCF calculation with quan-
tum free electrons.

First variational derivation of a relativistic SCF average
atom model with quantum bound and free electrons was pro-
posed by Liberman �9,10�. Liberman’s model has been
implemented in the Inferno code. The code has been the
object of many improvements �see, for instance, Ref. �11�,
and references therein�. In Liberman’s model the bound and
free electrons are considered in the whole infinite space.
There are two main assumptions in Liberman’s model: one is
the required neutrality of the WS sphere and the second is
the treatment of this sphere as a cavity, which means that
outside the WS sphere there is a constant positive charge
density of the value corresponding to the asymptotic nega-
tive electron charge density. Inside the WS sphere this posi-
tive charge of the noncentral ions is absent. Similarly, as in
the TF model of Ref. �1�, the neutrality of the WS sphere
provides the value of the chemical potential and conse-
quently, the value of the asymptotic electron charge density
equal to the constant positive charge density. In Liberman’s
model the pressure is calculated from the derivative of the
free energy of the finite part of the plasma contained in the
WS sphere. That leads to problems with the virial theorem;
some of these problems are related to the fact that wave
functions always extend beyond any finite system. In prac-
tice the pressure in the Inferno code is calculated from a
numerical derivative of the ion-cell free energy �11�.

Perrot proposed to consider the average atom in the whole
space also in the presence of the WS cavity �12�. In the AJCI
model and in the code based on that approach the neutrality
of the WS sphere is not required—Perrot shows in fact that
the requirement of the neutrality of the WS sphere is not
compatible with the variational principle. Instead, the neu-
trality of all the charges is imposed in the whole space. How-
ever, this last condition becomes identical with the require-
ment of the locality of the SCF potential and does not
determine the chemical potential that is needed in order to
provide the value of the asymptotic electron charge density.
For that reason in the AJCI model a supplementary external
condition is required in order to obtain the value of that
asymptotic density. Without that supplementary condition
Perrot’s approach can be viewed as a fully variational model
of an equilibrium characterized not by three but by four pa-
rameters: the matter density ni, the temperature T, the atomic
number of plasma atoms Z, and the asymptotic electron den-
sity n0, where n0=Z*ni and Z* is an assumed known number
of free �ionized� electrons per ion. In order to calculate the
electronic pressure the AJCI model needs a function �exter-
nal to the model� Z*�RWS�, i.e., the number of free electrons

per ion in the function of the average ion radius �or volume�.
That dependence in the AJCI model is taken from the TF
model. Since with the exception of this external condition,
the model is fully variational, the only numerical derivative
needed to calculate the electronic pressure comes from the
dependence Z*�RWS� �in practice the AJCI code uses the de-
rivative dZ*�RWS� /dRWS in the analytical approximate form
proposed by More �13��.

In the present paper we propose a correct variational ap-
proach to the average atoms and superconfigurations in plas-
mas. The main new idea is to use the cluster expansion of the
free energy of atoms in plasmas and to take into account the
two first terms of this expansion. We try in this way to avoid
problems present in Liberman’s �9,10� and Perrot’s �12� ap-
proaches. In both these approaches it appears necessary to
use an external condition, which can provide the chemical
potential, or equivalently, the asymptotic electron density n0.
As mentioned above in Refs. �9,10� this condition is taken in
the form of the neutrality of the WS sphere, while in Ref.
�12� it is taken in form of an external dependence Z*�RWS�. In
our opinion, the introduction of these external conditions �af-
ter the SCF equations have been obtained from a minimiza-
tion of the free energy� makes that the models from Refs.
�9,10,12� cannot be considered as totally variational. From
the technical point of view we believe that the nonvariational
character of Liberman’s and Perrot’s approaches stems from
the fact that these authors have minimized only the first-
order free-energy term in the cluster expansion and have not
taken into account before the minimization procedure a cor-
rect ionization model. In our approach this ionization model
leads to a dependence of the zero-order term on the variables
of the first-order term. This allows us to minimize the total
free energy �the sum of the zero- and the first-order terms�.

The plan of the present paper is as follows. In Sec. II we
will propose the general expression of the free-energy func-
tional retaining only two first terms from the cluster expan-
sion. The zero-order term of the free-energy functional is that
corresponding to a homogeneous electron gas neutralized by
a homogeneous constant density ion background. The ex-
pressions of the zero-order quantities will be given in Sec.
III. As concerns the first-order functional we will consider in
this paper three models of plasma atoms: the TF case �Sec.
IV�, the quantum average atom case �QAA� �Sec. V�, and the
superconfiguration case �SCs� �Sec. VI�. In all cases we will
retain the concept of the cavity but will consider the radius of
the cavity as an independent variable not connected �at least
from the beginning� to the WS radius. The prescription to
construct the first-order contribution to the free-energy func-
tional will be the same in the three cases. We assume that
around a chosen central ion there will be a localized change
in the electron density resulting in the appearance of a local-
ized potential. As already proposed in Refs. �9,10,12� the
first-order free energy will be equal to the difference between
the free energy of an infinite system containing the central
ion and the free energy of the homogeneous infinite system.
The minimization will be performed with two additional
conditions: the first is the general neutrality condition assur-
ing the localized nature of the potential and the second the
mentioned ionization model. In the superconfiguration case
there will be other conditions corresponding to the defini-
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tions of the supershells �4–6�. The minimization will be per-
formed with respect to all independent variables. Thus the
thermodynamic pressure formula will be in a simple form
that does not require any numerical differentiation. Section
VII contains the main conclusions.

In order to guide the reader the main ideas of the paper
can be presented with the help of references to the Inferno
model �9,10�, which is well known in the dense plasma com-
munity. As stated before in the Inferno model, one minimizes
the difference of the free energy due to the presence of the
central ion. In our approach this difference appears also but
as the first-order term �we recall that the free-energy expres-
sion in our approach is the sum of the zero- and first-order
terms �see Sec. II��. The construction of this first-order term
in the present paper and in the Inferno model is similar: the
free energy is that of an ideal electron gas in the field of a
SCF potential with a local density correction for the ex-
change and correlation in the quantum cases. As in the In-
ferno model in our QAA and SC cases the bound and free
wave functions are normalized in the whole space �let us
mention however, that the Inferno model is relativistic while
the quantum models of this paper are nonrelativistic although
their extensions to relativistic formalism are straightfor-
ward�. The zero-order term that is present in our approach
and that is absent in the Inferno model is the free energy of a
homogeneous electron gas occupying the volume of one ion
that is equal to 1/ni, i.e., the inverse of the ion density �see
Sec. III�. The presence of the zero-order term stems from the
cluster expansion used in our approach. It can be easily un-
derstood from the physical point of view since the first-order
term contains only a part of the free energy that is bound to
the ion and not the free energy of the plasma electrons that
remain unbound �bulk plasma electrons�. When electrons are
ionized both the zero-order and the first-order free-energy
terms are affected by this process �the ionized electron leaves
the “bound” population and appears in the bulk of the
plasma� and for that reason the right expression to be mini-
mized is the sum of both terms. Contrary to the Inferno
model in the present paper the notion of the ion cell and its
geometrical volume is not used: the ion volume 1/ni is in-
troduced only to calculate zero-order quantities, i.e., those of
the homogeneous electron gas. Due to the fully variational
character of our approach, the thermodynamic pressure can
be expressed by the explicit derivative of the thermodynamic
potential with respect to the ion density �the meaning of the
explicit derivative is given in Sec. II and Appendix A�. In the
Inferno model a cavity of the WS radius is introduced and
the neutrality of the WS sphere is imposed. The WS sphere
neutrality in the Inferno model allows one to calculate the
chemical potential, or equivalently, the average free-electron
density n0, which in the Inferno model is equal to the elec-
tron density at the WS radius. Moreover, in the Inferno
model the cavity volume is treated as the ion volume in the
expression for the thermodynamic pressure. However, since
the Inferno model is not fully variational there is no available
expression allowing one within that model to find the ther-
modynamic pressure from an explicit derivative of the ther-
modynamic potential. Although in our approach a cavity is
also introduced in order to account for noncentral ions, the
cavity radius is a variational variable �see the beginning of

Sec IV�. Since we do not impose the neutrality of the WS
sphere and only require the charge neutrality in the whole
space �it assures the locality of the SCF potential� our ap-
proach, as mentioned above, needs an “ionization model,”
i.e., an additional relation between the homogeneous free-
electron density n0 and the first-order variables. Thus in our
theory both the neutrality condition and the ionization model
have to be respected in the variational procedure. In the TF
case we have found that the correct ionization model is Z
−Z*=�d3r�n�r��−n0�, where n�r�� is the first-order electron
density. It appears to lead correctly to the classical TF ion-
cell model of Ref. �1�. Substituting that ionization model into
the neutrality equation, one can see that the cavity radius
becomes the WS radius �see Sec. IV�. Our variational calcu-
lation in the TF case leads to the conclusion that the homo-
geneous free-electron density n0 is to be determined from the
variational equation stating that the space integral of the
electrostatic potential outside the WS sphere is zero. This
equation �and its slightly modified versions in the QAA and
SC cases� is the main result of our approach. In the TF case
this equation appears to be equivalent to the neutrality of the
WS sphere �Sec. IV and Appendix B�. These TF calculations
are relatively straightforward and reflect well the main ideas
of our approach. In such a way all basic physical assump-
tions of our approach can in principle be found in Secs.
II–IV.

In the quantum QAA and the SC cases the calculations are
more involved but it appears that these cases lead to results
that are conceptually identical to the results in the TF case.
Again, the only physically acceptable ionization model is the
same as in the TF case. �An important point in the paper is
the demonstration that other ionization models are unphysi-
cal �see Secs. V and VI�.� In particular, the conditions allow-
ing one to calculate n0 in the quantum cases have the same
physical meaning as in the TF case �the integral of the elec-
trostatic potential outside the WS sphere equal to zero�.
However, the important fact is that in our quantum cases the
WS sphere is not neutral and the SCF potential is not zero
outside the WS sphere. It is decaying there but in general
may have oscillations due to the Friedel terms. This is the
main difference between the results of our quantum cases
QAA and SC and the Inferno model in which the imposed
neutrality of the WS sphere leads automatically to the SCF
potential, which is identically zero outside the WS sphere.

The relatively involved calculations in our cases QAA
�Sec. V� and SC �Sec. VI� are necessary since in these quan-
tum cases the ionization models can contain, at least in prin-
ciple, not only the first-order electron density but also other
first-order structure variables �this is practically impossible
in the TF case�. With such more complicated ionization mod-
els the variational approach should go beyond the usual den-
sity functional formalism. However, the reader that is not
interested in the details of this demonstration may go directly
to the results of Secs. V and VI. The formalism in the SC
case �Sec. VI� is based on the same ideas as that of Sec. V
with some important differences that are due to averages
over superconfigurations.

II. CLUSTER EXPANSION AND THE GENERAL SCHEME

We consider infinite plasma at a temperature T consisting
of classical ions �atomic number Z� at ion density equal to
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ni=Ni /V, where Ni is the number of ions and V is the volume
of the plasma. The electrons are treated quantum mechani-
cally and may be either bound to the ions or free. On aver-
age, the medium is neutral and the long-range Coulomb in-
teractions between ions and free electrons are screened. The
main idea of the cluster expansion we use �14� is to consider
statistically averaged quantities in the form of a series in
which each order includes a contribution from the number of
interacting ions equal to the order. In such a way the zero-
order term corresponds to the contribution from infinite ho-
mogeneous electron fluid neutralized by a constant ion back-
ground. In the zero-order term no ion center is present. The
first-order term corresponds to the contribution of one ion
center screened by the plasma, and the second-order term
corresponds to all possible contributions of the pairs of two
ion centers screened by the plasma, and so on. The cluster
expansion automatically assures that in the order p all con-
tributions that are already taken into account in lower orders
�i.e., in the order p−1, p−2, etc.� are correctly subtracted.
From the mathematical point of view this subtraction is nec-
essary for the convergence of the cluster expansion.

In this paper we are interested in the construction and
minimization of a free-energy functional of the plasma of the
element of the atomic number Z, characterized by the tem-
perature T and average ion density ni. The two first orders
�i.e., zero and one� of the cluster expansion of the free energy
per unit volume are

f�ni,T,Z� = f0 + �f�1 + ¯ . �1�

The zero-order term is the free-energy density of the homo-
geneous electron gas �jellium� and depends only on the tem-
perature and on an average free-electron density n0 that is
unknown at this moment and will be determined via the
variational procedure. The first-order term is of the form

�f�1 = ni� d3r�f1
�ion+jellium��X;ni,T,Z	r�� − f0�n0;T�� , �2�

where f1
�ion+jellium��X ;ni ,T ,Z 	r�� denotes a functional corre-

sponding to the free-energy density of a nonhomogeneous
infinite plasma interacting with and screening one central ion
imbedded in the plasma. The ensemble X denotes X
= 
n0 ,X1� where X1 represents all functions and variables de-
scribing the system of the first order, i.e., bound and free
electrons interacting with the central ion and with the
plasma. We assume that the change of the electron density
resulting from the insertion of the central ion is local, i.e.,
that far from the ion the free-electron density of the system
“ion+jellium” will be equal to n0. In this situation the sub-
traction of the zero-order free energy per unit volume inside
the integral of Eq. �2� may assure the convergence of the
first-order term.

In this paper we are interested mainly in the free energy
per ion, which is related to the free energy per unit volume as
F= f /ni.

This free energy per ion in our approximation will be

F�X;ni,T,Z� = F0 + �F1, �3�

where

F0 = F0�n0;ni,T� =
f0�n0;T�

ni
�4�

is the free energy of a homogeneous electron gas of an un-
known density n0, occupying the volume of that ion, and

�F1 =� d3r�f1
�ion+jellium��X;ni,T,Z	r�� − f0�n0;T�� . �5�

In the above equation �F1 is the correction to the free energy
per ion resulting from the presence of a central ion of the
total charge Ze. The central ion is screened by plasma elec-
trons and noncentral ions in such a way that the total charge
is zero. The expression for the free energy contains of course
the thermodynamic parameters ni ,T ,Z. We will construct the
free-energy functional in the vicinity of searched equilibrium
using an ensemble of functions and variables X describing
the electrons and ions. The equilibrium values of X will be
found from the minimization of the free energy F with re-
spect to these variables fulfilling some imposed conditions.
At equilibrium the value of the free energy per ion will de-
pend only on the values of ni ,T ,Z. The approximate expres-
sions for �F1 in three considered cases, having the same
form as that in Eq. �5�, will be proposed and discussed in the
following sections.

As already mentioned, the minimization procedure with
respect to n0 and 
X1� will be performed respecting a certain
number of conditions, which have the general form

Cj�X;ni,T,Z� = 0, j = 1, . . . ,J . �6�

The thermodynamic potential � per ion to be minimized is
thus of the form

��X;ni,T,Z� = F�X;ni,T,Z� − �
j=1,¯,J

� jCj�X;ni,T,Z� , �7�

where � j are the Lagrange multipliers.
Since F0 does not depend on 
X1� it is convenient to write

� in the form

� = F0�n0;T� + ��1�n0,X1;ni,T,Z� , �8�

where

��1 = �F1 − �
j=1,¯,J

� jCj�X;ni,T,Z� . �9�

The equilibrium forms and values of the ensemble of func-
tions and variables Xeq�ni ,T ,Z� is to be found from the equa-
tion

��

�X
�Xeq;ni,T,Z� = 0. �10�

The thermodynamic pressure can be calculated �see Appen-
dix A� from the following known formula:
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P = − 
 �F„Xeq�ni,T,Z�;ni,T,Z…

�vi



T=const

= ni
2
 �F„Xeq�ni,T,Z�;ni,T,Z…

�ni



T=const

= ni
2� ���Xeq;ni,T,Z�

�ni
�

explicit
. �11�

The index “explicit” in Eq. �11� means that in the differen-
tiation on the right-hand side �RHS� only the explicit depen-
dence on ni is taken into account while the dependence on ni
via Xeq�ni ,T ,Z� has to be disregarded �see Appendix A�.
Here we use the definition of the volume per ion vi=1/ni.
Due to the variational character of the equilibrium with re-
spect to all the functions and the variables X, we immediately
find

P = ni
2� ���Xeq;ni,T,Z�

�ni
�

explicit

= − f0�n0;T� + ni
2� ���1�Xeq;ni,T,Z�

�ni
�

explicit
, �12�

which means that the only differentiation that has to be per-
formed in Eq. �12� is upon the explicit dependence of ��1
on the ion density ni.

Let us note also that in the case of a well-defined equilib-
rium of a homogeneous gas �at a temperature T, with a
known density n0 and the corresponding chemical potential
�0�, the expression for the thermodynamic pressure is

P = − f0�n0;T� + n0�0�n0;T� . �13�

Comparing Eqs. �12� and �13�, we see that the second term
on the RHS of Eq. �12� will in some sense replace the well-
known term n0�0�n0 ;T�. However, its calculation will in-
volve all the parameters of the equilibrium; that is, ni ,T ,Z
instead of n0 ,T as in the case of the homogeneous electron
gas with a given electron density value.

As previously stated, the zero-order term of the potential
� contains only one variable n0 and does not depend on the
first-order variables X1. The variational equation with respect
to n0 is the only one that involves both the zero-order term
F0 and the first-order term ��1. It has the form:

1

ni

�f0�n0�
�n0

+
���1

�n0
=

�0

ni
+

���1

�n0
= 0. �14a�

In the previous approaches �that applied in the model Inferno
�9,10� and that in the model AJCI �12�� the relation Eq. �14a�
is not used: only the first-order contribution ��1 to the ther-
modynamic potential is considered and the equilibrium equa-
tion is

���1

�X1
= 0. �14b�

In such a way the number of variational equations in Eq.
�14b� is less by one than the number of equations in Eq. �10�.
What is lacking is an equation allowing one to find the value
of n0. As mentioned above in the Inferno model �9,10�, the
additional condition for n0 is the neutrality of the WS sphere.

Similarly, the approach AJCI �12� does not allow one to de-
termine the average ionization Z*=n0 /ni �equilibrium in this
approach is given by four parameters: ni, T, Z, n0 and not by
the usual three ni, T, Z�.

A. Remark on the virial theorem

Classical and quantum many-particle systems satisfy a
virial theorem �see, for instance, Ref. �15��. In a system of
particles interacting via the Coulomb potential the virial
theorem yields the following relation between the thermody-
namic pressure, total volume, and kinetic and potential ener-
gies of the system:

3

2
PV = �Ekin� +

1

2
�Epot� . �15�

The standard proof of the virial theorem applies to exact
microscopic many-body systems. In the case of involved ap-
proximate self-consistent approaches �as the one presented
here in this paper� checking whether the virial theorem is
valid is often not straightforward since the potential and ki-
netic energies cannot be directly identified. In such cases it is
convenient to apply the similarity transformation proposed in
Ref. �1�. This similarity transformation is based on the fol-
lowing scaling:

T → �T , �16a�

r� → �−1/2r� , �16b�

e2 → �1/2e2, �16c�

where T, r�, and e2 are the temperature, the coordinate vector,
and the square of the elementary charge, respectively, and �
is the scaling parameter. In our case in which we consider the
free energy per ion F, we shall prove that the equilibrium
value of F has the following scaling property:

F��3/2ni,�T,�1/2e2� = �F�ni,T,e2� . �17�

If this scaling is preserved in the model, the differentiation of
Eq. �17� with respect to � taken at the value �=1, leads to

T
� �F

�T
�


ni,e
2

+
3

2
ni
� �F

�ni
�


T,e2
+

1

2
e2
� �F

�e2�

ni,T

= F .

�18�

One can identify the partial derivatives as follows:

e2
� �F

�e2�

ni,T

= �Epot�/Ni, �19a�

ni
� �F

�ni
�


T
= − vi
� �F

�vi
�


T
= Pvi, �19b�

F − T
� �F

�T
�


ni

= F + Tsi = ui, �19c�

where P is the thermodynamic pressure, si is the entropy per
ion, and ui is the total energy per ion. Substitution of Eqs.
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�19� into Eq. �18� leads to the virial theorem,

3

2
Pvi = ui −

1

2
�Epot�/Ni. �20�

The scaling property of Eq. �18� has to be directly verified in
the self-consistent equations resulting from the variational
approach. The physical interpretation of terms from Eq. �18�
is simplified when the equilibrium state is fully variational.
In our approach in which the equilibrium is variational with
respect to all variables X, we have, as in the case of the
pressure equation �see Eq. �11� and Appendix A�,


� �F

�T
�


ni,e
2

= � ���Xeq;ni,T,Z,e2�
�T

�
explicit

, �21�

and


� �F

�e2�

ni,T

= � ���Xeq;ni,T,Z,e2�
�e2 �

explicit
. �22�

These identities make the identification of some terms stand-
ing on the RHS of Eq. �20� straightforward.

III. ZERO-ORDER OR HOMOGENEOUS ELECTRON GAS

In the zero-order the electron charge density −en0 of the
homogeneous electron gas is neutralized by the homoge-
neous ion charge density of the same absolute value and the
opposite sign. In the TF case, when exchange interaction is
neglected, the contribution will be the free energy of the
noninteracting electron gas at the temperature T and density
n0, f0

�0��n0�,

f0�n0� = f0
�0��n0� . �23�

The distribution of the independent-electron gas energy will
be in the form of the noninteracting electrons, i.e., of the
Fermi-Dirac form,

n0 =
2

�2��3 � d3k
1

e��	k−�0� + 1
, �24�

where �=1/T, the factor 2 accounts for the spin degeneracy

	k =
�
k�2

2m
, �25�

and �0 is the free-electron chemical potential, unknown at
the moment �directly related to the density n0 by Eq. �24��.
The zero-order free energy of the independent electron gas
per unit volume f0

�0��n0� is therefore

f0
�0��n0� =

2

�2��3 � d3k�nk
�0�	k − TSk

�0�� , �26�

where

Sk
�0� = − �nk

�0� ln�nk
�0�� + �1 − nk

�0��ln�1 − nk
�0��� , �27�

and

nk
�0� =

1

exp���	k − �0�� + 1
. �28�

In the quantum average atom and in the superconfigurations
cases considered in the following sections the zero-order
term will not only contain the f0

�0��n0� term but will also take
into account a density-functional-theory �DFT� exchange-
correlation free energy fxc�n0�. So in these two cases we will
have

f0�n0� = f0
�0��n0� + fxc�n0� . �29�

In practice we will use for fxc�n0� the local-density exchange-
correlation approximation as given in Ref. �16�.

IV. THOMAS-FERMI MODEL OF THE FIRST-ORDER
FREE ENERGY

We will follow here Mermin’s approach �17� to the TF
finite temperature theory as a particular case of the DFT. In
the first order the density of electron gas is modified by the
central charge and will be characterized by the distribution
function

nk
�1��r�� =

1

exp���	k − e2V�r�� − �0�� + 1
, �30�

where V�r�� is a trial variable that is local and tends to zero
for large r= 	r�	 sufficiently fast. In such a way nk

�1��r�� →
r→�

nk
�0�.

The first-order electron density n�r�� is equal to

n�r�� =
2

�2��3 � d3knk
�1��r�� . �31�

Far from the center the ion homogeneous distribution �com-
ing from the ions other than the central ion� neutralizes the
electron charge distribution. We assume that this occurs start-
ing from a radius R �unknown at this moment� from the ion
center. We introduce therefore a cavity around the central ion
to which the charge distribution from ions other than the
central ion does not enter. The correction with respect to the
charge density of the zero order is as follows: change of the
electron charge density,

− e�n�r�� − n0� ,

change of the noncentral ions charge density,

e�n0��r − R� − n0� ,

total change of the charge density,

�total
�1� �r�� = Ze��r�� − e�n�r�� − ��r − R�n0� . �32�

According to the general scheme and Eq. �2� the change
of the free energy due to the presence of the additional
charges will be given by the following formula:

T. BLENSKI AND B. CICHOCKI PHYSICAL REVIEW E 75, 056402 �2007�

056402-6



�F1,TF = �F1,TF
�0� + �F1,el, �33�

where �F1,TF
�0� accounts for the correction of the kinetic en-

ergy and of the entropy terms and �F1,el is the electrostatic
interaction term,

�F1,TF
�0� �n0,V�r��,R;T,ni,Z� =� d3r

2

�2��3 � d3k
	k�nk
�1��r��

− nk
�0�� − T�Sk

�1��r�� − Sk
�0��� ,

�34�

where

Sk
�1��r�� = − �nk

�1��r��ln�nk
�1��r��� + �1 − nk

�1��r���ln�1 − nk
�1��r���� ,

�35�

and

�F1,el =� d3r��n�r�� − ��r − R�n0��−
Ze2

r

+
e2

2
� d3r�

�n�r��� − ��r� − R�n0�
	r� − r��	

�� . �36�

It is supposed that the expressions in Eqs. �34�–�36� are well
defined, i.e., they are finite. This is assured by the local neu-
trality. In order that our model be correct the total charge
introduced in the first order should be zero, i.e., we shall
have

� d3r �total
�1� �r�� = 0 or Z −� d3r�n�r�� − n0� −

4�R3n0

3
= 0.

�37�

A. TF ionization model

The important point is now to relate the value of n0,
which is the average free-electron density with the first-order
density n�r�� and with the ion density. The free-electron den-
sity is the density of these electrons that can be found far
from the central ion. We choose the following condition:

n0

ni
= Z −� d3r�n�r�� − n0� . �38�

The left-hand side is the number of the free electrons per ion.
The right-hand side is the difference between the total num-
ber of electrons per ion, Z, and the number of electrons that
are “bound” to the ion. In the TF model this definition seems
to be natural since in that model there is no distinction be-
tween bound and free electrons. It also corresponds well to
the scheme of the cluster expansion.

B. Functional to be minimized in the TF case

In principle the two constraints, the neutrality condition
Eq. �37� and the ionization model, i.e., Eq. �38�, should be
used in the construction of the thermodynamic potential �TF.
However, with our choice of the ionization model substitut-
ing Eq. �38� into Eq. �37� gives immediately

n0

ni
=

4�R3n0

3
or ni =

3

4�R3 , �39�

which means that R is the Wigner-Seitz radius. In such a way
we will only include into the potential �TF the equation cor-
responding to the ionization model, i.e., Eq. �38�, with a
corresponding Lagrange multiplier that we call 
. Thus the
thermodynamics potential becomes

�TF„n0,V�r��;ni,T,Z… =
f0�n0;T�

ni
+ �F1,TF„n0,V�r��;ni,T,Z…

− 
�n0

ni
− �Z −� d3r�n�r�� − n0��� ,

�40�

where the radius R is given by formula �39�.

C. TF variational principle

At equilibrium �TF has to be stationary with respect to n0
and V�r��. We calculate the derivates using the fact that at
fixed n0 the potential �TF is a functional of n�r�� �see Eq. �40�
and Ref. �17��. We may thus write �TF(n0 ,V�r�� ;ni ,T ,Z)
=�TF� (n0 ,n�r�� ;ni ,T ,Z) and calculate


 ��TF

�V�r��



n0=const

=� d3r��
��TF�

�n�r���



n0=const

 �n�r���

�V�r��



n0=const
�

= 0, �41�


��TF

�n0



V�r��=const
=� d3r�
��TF�

�n�r��



n0=const

�n�r��

�n0



V�r��=const
�

+ 
��TF�

�n0



n�r��=const
= 0. �42�

From Eq. �41�, Eq. �30�, and Eq. �31�, we get immediately


 ��TF�

�n�r��



n0=const

 �n�r��

�V�r��



n0=const

= 0, �43�

due to the fact that


 �n�r���
�V�r��



n0=const

= ��r� − r���
 �n�r��
�V�r��



n0=const

�see Eqs. �30� and �31�� and since 	�n�r�� /�V�r��	n0=const is
nonzero �see again Eqs. �30� and �31�� we should have


 ��TF�

�n�r��



n0=const

= 0. �44�

The last derivatives can be easily calculated �see also Ref.
�17��.

��TF�

�n�r��
= e2V�r�� + �0 − e2Vel�r�� − 
 , �45�

where we defined the potential due to the electrostatic inter-
action as
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e2Vel�r�� = �Ze2

r
− e2� d3r�

�n�r��� − ��r� − R�n0�
	r� − r��	

� .

�46�

We get from Eqs. �45� and �44�,

e2V�r�� − e2Vel�r�� = − �0 + 
 . �47a�

From the fact that both V�r�� and Vel�r�� tend to zero for r
→� �from the assumption of the locality and the neutrality
Eq. �37�, respectively� we arrive finally at the equations

V�r�� = Vel�r�� , �47b�


 = �0. �47c�

We also see that due to Eq. �44� the first term on the RHS of
Eq. �42� is identically zero. One can calculate directly �see
also Ref. �17��,

�f0
�0��n0;T�

�n0
= �0

and get from Eq. �42� with Eq. �47�,

�0 − 


ni
+� d3r�
 − �0 + ��r − R�e2Vel�r���

=� d3r ��r − R�e2V�r�� = 0. �48�

It is easy to check that the well-known solution of the TF
ion-in-cell model considered in Ref. �1� fulfills the just ob-
tained equations of our model with the TF form of the first
order �F1 and with the ionization model of Eq. �38�. In the
TF model of Ref. �1� the WS sphere is neutral, the potential
is zero at the WS radius, and is identically zero outside the
sphere. This potential is calculated from the same Poisson
equation as our Eq. �46� but is limited to the region inside the
WS sphere and with the boundary condition
	dV�r� /dr	r=RWS

=0. Moreover, it appears also that the TF
ion-in-cell model of Ref. �1� is the unique solution fulfilling
our system of self-consistent equations, Eqs. �30�, �31�, �46�,
�47b�, and �48�. This equivalence is discussed in Appendix B
�18�. In this way in the TF case we get the neutrality of the
WS sphere, the potential that is identically zero outside the
sphere and the first-order electron density that is equal to the
average �asymptotic� electron density outside the sphere. The
chemical potential �0 and consequently the average electron
n0 density are determined from the neutrality of the WS
sphere,

�
r�RWS

d3rn�r�� = �
r�RWS

d3r
2

�2��3 � d3k
1

e��	k−e2V�r��−�0� + 1

= Z . �49�

D. Pressure calculation in the TF case

According to the general scheme �see Eq. �11� and Ap-
pendix A� we calculate pressure from the standard thermo-
dynamic definition,

PTF = 
ni
2�FTF

�ni



T=const
= 
ni

2��TF

�ni



explicit
, �50�

where we use the variational property of the equilibrium
state. Let us note that in the TF case,

��TF„n0,�V�r��;R�ni�,T,Z,ni…

�R�ni�

=
�

�R�ni�
� d3r ��r − R�ni��e2V�r��

= − 4�n0R�ni�2V�R�ni�� = 0. �51�

Immediately we get from Eqs. �51�, �42�, and �47�,

P = 	�− f0�n0� + n0�0�n0��	n0=n0,eq
, �52�

where n0,eq=n0,eq�T ,ni ,Z� is the equilibrium solution and �0

can be obtained from n0 using Eq. �24�. In Eq. �52� we find
the same expression as that in Ref. �1� �see also Ref. �19��.
We recover in this way the expression for pressure formally
identical to the expression for the pressure of an ideal gas
except that the average electron density and chemical poten-
tial of that gas are now calculated from the SCF TF model.
The EOS data based on the ion-in-cell TF model are being
widely used among the dense plasma community �see, for
instance, Ref. �20��.

Other definitions different from Eq. �38� for the number
of “bound” electrons in our TF case do not lead to the stan-
dard Thomas-Fermi ion-in-cell model at finite temperature.
In fact Eq. �38� does not make use of any division of elec-
trons into bound and free; such a division does not appear in
a natural way in the Thomas-Fermi model. Sometimes, how-
ever, in the literature are used expressions for the bound
electrons in which the bound electrons are defined as those
that have the total energy negative,

�
k�2

2m
− e2V�r�� � 0. �53�

One may try to put the number of bound electrons Zb into the
expression for n0 using for Zb the following definition:

Zb =
2

�2��3 � �
	k−���r���0

d3r d3k
1

e��	k−���r��−�0� + 1
. �54a�

Consequently, Eq. �38� would be replaced by its new version,

n0

ni
= Z − Zb. �54b�

One can easily check that the choice of Eqs. �54a� and �54b�
in our variational formulation does not give the Thomas-
Fermi model.
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V. QUANTUM AVERAGE ATOM IN PLASMA

The result of Sec. IV can be considered as a good test of
our variational principle. The TF case �i.e., our variational
approach with the TF expressions for the first-order ion free
energy� leads to the classical result of the TF finite tempera-
ture ion-in-cell model �1,19�. An important role in the deri-
vation plays the ionization model that in the TF case has
been chosen in the form of Eq. �38�. This result gives us
confidence as concerns possible extensions of our approach
to the quantum atoms and superconfigurations in plasmas.

In this section we will now consider the QAA case. We
assume that the first-order free energy can be approximated
by the expression corresponding to a quantum nonhomoge-
neous noninteracting electron gas in a local, bounded �i.e.,
having a finite support� potential V�r��. This potential is un-
known at the moment. In this approximation the electron
density n�r�� is

n�r�� = 2�
s�B

ns	�s�r��	2 +
2

�2��3 � d3k nk	�k��r��	2. �55�

The bound states of V�r�� have indices s�B �their number
will be finite due to the potential locality�. Their eigenvalues,
occupations, and the wave functions will be, respectively, 	s,
ns, and �s�r��. The presence of the potential will also modify
the wave function of the free states.

A question appears: What ionization model should be
used in the QAA case? The first possibility is to use in our
QAA case the same ionization model as in the TF case, i.e.,
Eq. �38�. Then, since this ionization model is expressed as a
functional of electron density one may use principles of the
DFT approach. Although the calculation is more involved in
the quantum DFT case it follows the main lines of that in the
TF case.

However, in the quantum case there are two categories of
electrons and, in principle, other ionization models �i.e.,
other than that of Eq. �38�� could also be considered. In
particular, in the quantum cases there is a natural division of
one-electron states into bound and free. In this situation an-
other natural ionization model could be the following one:

n0

ni
= Z − Zb, �56a�

with the bound electron number Zb defined as

Zb = 2�
s�B

ns� d3r	�s�r��	2 = 2�
s�B

ns, �56b�

and where the sum is over all the bound spectrum B of the
SCF potential. The factor 2 corresponds to the spin degen-
eracy. The ionization model of Eqs. �56a� and �56b� seems to
be intuitively justified since only the bound electron states
are local. All free electron states have asymptotic behavior of
outgoing waves and are not localized.

In general, any ionization model can be expressed in the
form of Eq. �56a� with a more general definition of Zb. As-
suming that this quantity can be expressed entirely in terms
of the first-order variables and of the average electron den-
sity n0, one can write it in the following form:

Zb = Zb��n0,V�r��,
ns�,
nk�� = Zb�n0,n�r��,
ns�,
nk�� .

�56c�

In the following consideration we will use the last term on
the RHS of Eq. �56c� since due to its dependence on the
electron density n�r�� it contains as special cases two ioniza-
tion models that seem to be physically sound: the one used in
the TF case �Eq. �38�� and the above-mentioned ionization
model Eq. �56b�. We will show, however, below that, ioniza-
tion models other than the ionization model of Eq. �38� lead
to solutions in which the chemical potentials for bound and
free electrons are different, i.e., to solutions that are not ac-
ceptable from the point of view of the physical coherence.
General ionization models such as, Eqs. �56b� and �56c� may
distinguish and treat differently bound and free electrons. In
such a way they contain, in general, expressions that are not
simple functionals of the first-order density n�r�� at fixed n0.
Thus in order to see what consequences may have such mod-
els, one shall use a variational approach that goes beyond the
DFT approach. For that reason we will use in what follows a
more general variational approach in which the variables will
be the potential V�r�� and the bound and free occupation num-
bers. In such a way the bound and free-state occupations
numbers ns and nk are at the moment arbitrary. In that situ-
ation the electron density given in Eq. �55� does not, in gen-
eral, correspond to an electron density of a noninteracting
electron gas at equilibrium. We require, however, that far
from the ion center the density n�r�� →

r→�
n0, i.e., far from the

central ion the electron charge distribution becomes −en0
that is the same as that of the zero order �with the constant n0
that has to be determined�. The bound and free wave func-
tions fulfill the Schrödinger equation with the potential
−e2V�r��,

�−

2

2m
�� 2 − e2V�r�����s�r��

�k��r�� � = � 	s�s�r��
		k�	�k��r�� � . �57�

The free-electron wave functions are normalized as are the
plane waves to the delta functions in the k� space,

� d3r �k�
*�r���k���r�� = �2��3��k� − k��� . �58a�

This leads �see, for instance, Ref. �9�� to the equation that
can be also considered as the normalization condition of the
free electron states,

� d3r�	�k��r��	2 − 1� = Ck� , �58b�

with Ck� being finite for each k�. The bound wave functions
are normalized to unity.

A. First-order free energy per ion in the QAA case

In the chosen approximation the correction to the free
energy resulting from the presence of the central ion, of the
ion cavity and of the response of the electron gas to this
presence, is of the form
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�F1,QAA„n0,V�r��,R;T,Z… = �F1,QAA
�0� + �F1,el + �F1,xc,

�59�

where

�F1,QAA
�0� = 2�

s�B
�ns� d3r �s

*�r���−

2

2m
�� 2�s�r��� − TSs�

+� d3r� 2

�2��3 � d3k�nk
�0���k�

*�r���−

2

2m
�� 2�k��r���

− 	k� − TSk
�0�	�k��r��	2� − f0

�0��n0�� . �60a�

�F1,el has the same form as in Eq. �36�, and

�F1,xc =� d3r
fxc�n�r�� − fxc�n0��� �60b�

is the exchange-correlation term.
In Eq. �60a�,

Sa = − �na ln�na� + �1 − na�ln�1 − na�� �60c�

is the entropy of electron states with a�B or a�F.
For the locality of the potential it is necessary that the

total charge be zero, which means also that the integrals in
Eqs. �36� and �60a� exist. As already mentioned, the
exchange-correlation correction will always be considered in
the local-density-approximation �LDA� approach, i.e., as a
function of the local density �16�.

As indicated in the general scheme, the free energy per
one ion �being the sum of the zero- and the first-order free
energies� can be thus written as

FQAA„n0,V�r��,
ns�,
nk�,R;T,ni,Z… =
f0�n0;T�

ni

+ �F1,QAA„n0,V�r��,
ns�,
nk�,R;T,Z… . �61�

The factors 1 /ni multiplying the homogeneous electron gas
free-energy term corresponds to the volume occupied by
each ion.

B. Functional to be minimized in the QAA case
and variational equations in the first order

We start our considerations on the variational method as-
suming the general ionization model of Eq. �56c�. Thus in
the QAA case the general form of the functional correspond-
ing to the thermodynamic potential is

�QAA„n0,V�r��,
ns�,
nk�,R;ni,T,Z…

=
f0�n0;T�

ni
+ �F1,QAA„n0,V�r��,
ns�,
nk�,R;T,Z…

− 
�n0

ni
− Z + Zb„n0,n�r��,
ns�,
nk�…�

− ��Z −� d3r�n�r�� − n0� −
4�R3n0

3
� , �62�

where 
 and � are Lagrange multipliers.

The equilibrium has to be constructed by variational cal-
culation with respect to all variables: V�r��, all ns, all nk, R,
and n0. As previously stated, the variation with respect to the
last variable is the only one that involves both the zero- and
the first-order contribution to the thermodynamic potential of
Eq. �62�. We will first consider the variation calculation of
the first order ��1,QAA. The SCF equations at equilibrium
describing the ion structure at fixed n0 will be found from the
stationarity of the potential ��1,QAA with respect to the first-
order variables, namely,

���1,QAA

�V�r��
= 0,

���1,QAA

�ns
= 0,

���1,QAA

�nk
= 0,

���1,QAA

�R
= 0, �63�

where the derivatives with respect to the occupation numbers
cover all states bound s�B and free k� �F. It is assumed that
the occupation numbers of the free states depend only on the
wave number k. For the calculation of the functional deriva-
tive ��F1,QAA

�0� /�V�r�� at constant occupations numbers and at
constant average density n0, we use the following identity:

��F1,QAA
�0�

�V�r��
= �

s�B
� dr�����F1,QAA

�0�

��s�r���
��s�r���
�V�r��

+
��F1,QAA

�0�

��s
*�r���

��s
*�r���

�V�r��
�

+
1

�2��3 � dk�� dr�����F1,QAA
�0�

��k��r���

��k��r���

�V�r��

+
��F1,QAA

�0�

��k�
*�r���

��k�
*�r���

�V�r�� � . �64�

The expressions for functional derivatives of the wave func-
tions with respect to the potential and the details of the cal-
culations are given in Appendix C. The result can be pre-
sented in the following form:

��F1,QAA
�0�

�V�r��
= − 2e4 �S�

a�B,F
�S�

b�B,F
�na − nb

	a − 	b
�Vab�a�r���b

*�r��

− 2e2� d3k

�2��3 	�k�r��	2
�nk

�	k
�	k + ln� nk

1 − nk
�� ,

�65�

with a�b when both a ,b�B and where the operator �S�
a�B,F

is

to be understood as
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�S�
a�B,F

= ��
s�B

if a = s � B ,

1

�2��3 � d3k if a = k� � F ,� �66�

and

Vab =� d3r �a
*�r��V�r���b�r�� . �67�

Taking into account the remaining terms in ��1,QAA we get
�see Appendix C�

���1,QAA

�V�r��
= − 2e4 �S�

a�B,F
�S�

b�B,F
�na − nb

	a − 	b
��Vab�a�r���b

*�r��

− 2e2� d3k

�2��3 	�k�r��	2
�nk

�	k
�̃k = 0, �68�

and we denote

�Vab =� d3r �a
*�r���V�r���b�r�� . �69a�

The potential difference function standing in Eqs. �69� is
equal to

�V�r�� = V�r�� − Vin�r�� − 

HZb
�n�r��� − HZb

�n0�� , �69b�

where Vin�r��, the interaction potential, contains the usual
electrostatic and exchange-correlation terms

e2Vin�r�� = e2Vel�r�� − 
vxc�n�r�� − vxc�n0�� , �70�

where Vel�r�� is defined as in the TF case �see Eq. �46�� while
the contribution that is multiplied by 
 is defined as �see Eq.
�56c� and Appendix C�

HZb
�n�r��� � 
 �Zb„n0,n�r��,
ns�,
nk�…

�n�r��



n0,
ns�,
nk�=const

.

�71�

The parameter �̃k is defined as �a can be bound or free�

�̃a = 	a + vxc�n0� − 
HZb
�n0� + � + T ln� na

1 − na
� . �72�

From the variations with respect to the bound and free occu-
pation numbers we get

���1,QAA

�ns
= 2�̃s + 2e2� d3r	�s�r��	2�V�r��

− 

�Zb„n0,n�r��,
ns�,
nk�…
�ns



n0,n�r��,
nk�=const

= 0,

�73�

���1,QAA

�nk
=

2

�2��3 � d3r	�k��r��	2�e2�V�r�� + �̃k�

− 

�Zb„n0,n�r��,
ns�,
nk�…
�nk



n0,n�r��,
ns�=const

= 0.

�74�

Finally, from the last of Eqs. �63� we obtain

���1,QAA

�R
= − 4�R2n0e2Vel�R� + 4�R2n0� = 0. �75�

The last equation gives immediately the expression for the
Lagrange multiplier �,

� = e2Vel�R� . �76�

C. Restrictions on ionization models stemming
from variational first-order QAA equation

We will now analyze the obtained equations for the SCF
calculation �Eqs. �66�, �73�, �74�, and �76�� of the first-order
variables at fixed n0. We will show that the requirements of
physical coherence in the QAA model with cavity allows one
to use only one ionization model: the ionization model given
in Eq. �38�, i.e., the same that appeared to be successful in
the Thomas-Fermi case considered in the Sec. IV.

Let us define the operator defined by the following
matrix:

Aab = − 2e2��
nk − nk�

	k − 	k�
��Vk�k���k��r���k��

* �r�� +
�nk

�	k

�̃k

e2 	�k��r��	2��k� − k��� , a = k� � F, b = k�� � F

�na − nb

	a − 	b
��Vab�a�r���b

*�r�� when at least one of a,b � F .� �77�
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The matrix A is Hermitian since A+=A and can be diagonal-
ized by an operator U such that U+U=UU+= I. The result of
the diagonalization is UAU+=B, where B is diagonal. Eq.
�68� can now be written in the form

���1,QAA

�V�r��
= �S�

a�B,F
�S�

b�B,F
Aab�a�r���b

*�r��

= �S�
a�B,F

�S�
b�B,F

�b
*�r���U+BU�ab�a�r��

= �S�
c�B,F

Bcc	�U+��r���c	2 = 0, �78�

where ��r�� is a shorthand notation for the vector

�c�r�� = ��s�r�� , c = s � B

�k��r�� , c = k� � F .
� �79�

In order that the spatial-dependent operator in the last term
of Eq. �78� be zero one should have Bcc=0. This means that
the whole operator A has to be equal to zero. Let us now note
that the operator A as defined by the Eq. �77� is composed of
well-separated diagonal and off-diagonal parts. Both parts
should be equal to zero and that is possible only if

�Vab = 0 for a � b , �80a�

and

�̃k = 0 for all k . �80b�

Let us recall that the bound and free wave functions fulfill
the completeness relation

�
s�B

�s
*�r���s�r��� +� d3k�

�2��3�k��
* �r���k���r��� = ��r� − r��� .

�81�

Let us multiply Eq. �81� by �k�
*�r����V�r��� and integrate with

respect to r��,

�
s�B

�s
*�r����k�	�V	�s� +� d3k�

�2��3�k��
* �r����k�	�V	�k���

= �k�
*�r���V�r�� . �82�

In such a way if all �Vk�s=0 and for a given k� all �Vk�k��=0
then

�V�r�� = 0, �83�

except perhaps in the zeros of �k�
*�r��. However, the ensemble

of zeros of �k�
*�r�� has the measure equal to zero in the coor-

dinate space. Except the element r�=0, the ensembles of zeros
of �k�

*�r�� and �k�1

* �r�� have no common part if k� �k�1 so Eq. �83�
gives for the localized potential V�r�� the following solution

V�r�� = Vin�r�� + 

HZb
�n�r��� − HZb

�n0�� . �84�

The interaction potential Vin�r�� has a well-established physi-
cal sense and has been already found in previous approaches
�see Refs. �9–12��. The second part with 
 does not corre-
spond to any realistic physical interactions. This term disap-

pears identically in two situations. We discuss these cases
and their consequences below.

Case (a). The first situation is when Zb(n0 ,n�r�� , 
n� , 
nk�)
is a linear functional of the first-order density n�r��. This is
the case of the ionization model of Eq. �38� for which we
have

Zb�n0,n�r��,
ns�,
nk�� =� d3r�n�r�� − n0� �85a�

that immediately leads to HZb
�n�r���=1 and to

HZb
�n�r��� − HZb

�n0� = 0 �85b�

�see Eq. �71��.
We note that Eq. �80b�, the second equation stemming

from the stationarity of ��1 with respect to the potential,
gives in the present case

�̃k = 	k + vxc�n0� − 
 + � + T ln� nk

1 − nk
� = 0 �86a�

since we have HZb
�n0�=1.

Equation �86a� leads to the Fermi-Dirac occupation of the
free states, i.e., to

nk = nk
�0�, �86b�

since asymptotically the first-order density n�r�� tends to n0

for large r. That gives the following equation involving the
Lagrange multipliers


 − � = �0 + vxc�n0� . �86c�

Let us now look at what consequences Eqs. �73� and �74�
have for the class of ionization models considered in case
�a�. We conclude that Zb(n0 ,n�r�� , 
ns� , 
nk�) should not de-
pend on 
nk� since due to Eqs. �80a� and �80b� the first term
in Eq. �74� is zero and the second leads to


�Zb„n0,n�r��,
ns�,
nk�…
�nk



n0,n�r��,
ns�=const

= 0. �87�

From Eq. �73� we get in case �a�,

2�	s + vxc�n0� − 
 + � + T ln� ns

1 − ns
��

− 

�Zb„n0,n�r��,
ns�…
�ns



n0,n�r��=const

= 0. �88�

Comparing Eq. �88� with Eq. �86a� it is clear that in order to
get for the bound states the Fermi-Dirac occupation numbers
with the same chemical potential as the Fermi-Dirac occupa-
tion numbers of free states one shall have


�Zb„n0,n�r��,
ns�…
�ns



n0,n�r��=const

= 0. �89a�

In such a way we get that in the present case the general
dependence of Eq. �56c� is reduced to Zb=Zb(n0 ,n�r��) with a
linear functional dependence on n�r��. Thus the only physi-
cally acceptable ionization model fulfilling the conditions
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obtained from variational results in the present case is the
ionization model given in Eq. �38� �i.e., the ionization model
with Zb from Eq. �85a��. In the case of Eq. �38� we get

ns =
1

exp���	s − �0� + 1�
. �89b�

Case (b). The unphysical term in the potential disappears
also when Zb(n0 ,n�r�� , 
ns� , 
nk�) does not depend on n�r��,
i.e., when we have

Zb„n0,n�r��,
ns�,
nk�… = Zb�n0,
ns�,
nk�� . �90�

Let us again note that this is the situation if one chooses the
ionization model given in Eq. �56b�. In the case of the ion-
ization models of Eq. �90� we will get from Eq. �80b�,

�̃k = 	k + vxc�n0� + � + T ln� nk

1 − nk
� = 0, �91a�

and since Eq. �86b� holds in the present case,

− � = �0 + vxc�n0� . �91b�

From Eq. �74� we get the same result as in case �a�, i.e., Eq.
�87�. The variation with respect to the occupation numbers of
the bound states now provides

2�	s + vxc�n0� + � + T ln� ns

1 − ns
��

− 

�Zb�n0,
ns��
�ns



n0,n�r��=const

= 0. �92�

Comparing Eqs. �92� and �89a� one finds that the disappear-
ance of the last term in Eq. �92� is necessary if the bound
states have to have the Fermi-Dirac distributions with the
same chemical potential as that of the free states. Then, how-
ever, one should have in the case considered here,

Zb = Zb�n0� , �93�

that excludes all reasonable ionization models and, in par-
ticular, the ionization model proposed in Eq. �56b�. Thus the
requirement that the chemical potential be the same for
bound and free states excludes all the class of ionization
models considered in case �b�.

D. Results from the variational approach in the QAA case
with the ionization model of Eq. (38)

The choice of the ionization model Eq. �38� and the sta-
tionarity of �QAA with respect to all first-order variables, i.e.,
all variables except n0, leads to the first-order occupation
numbers for both bound �Eq. �89b�� and free states �Eq.
�86b�� in the Fermi-Dirac form with the same chemical po-
tential �0 as in the zero-order occupation numbers. The SCF
potential V�r��=Vin�r��, where the interaction potential is
given in Eq. �70�. Again as in the TF case, the radius R
=RWS �see Eq. �39�� due to the neutrality equation and to the
ionization model �see two Lagrange terms in Eq. �62��. The
Lagrange multiplier � is given in Eq. �76� and 
 can be
found from Eq. �86c� and Eq. �76�,


 = �0 + vxc�n0� + e2Vel�R� . �94�

It remains now to exploit the last variation equation, namely,
the stationarity of �QAA with respect to n0, that involves
both the zero- and the first-order contribution to the thermo-
dynamic potential of Eq. �62�. Taking into account that
�f0

�0��n0 ;T� /�n0=�0 �see Sec. IV and Eq. �76�� one gets eas-
ily from Eq. �62�,


��QAA

�n0



V�r��,
ns�,
nk�
=

�0 + vxc�n0� + e2Vel�RWS� − 


ni

+� d3r�− �0 − vxc�n0� − e2Vel�RWS�

+ 
 + ��r − RWS�e2Vel�r���

=� d3r ��r − RWS�e2Vel�r�� = 0, �95�

where we have used Eq. �94�. We get in Eq. �95� the same
relation as in the TF case �compare Eq. �48�� however, now
the electrostatic potential Vel�r�� is calculated within the SCF
QAA scheme. More important—this potential is not equal to
zero beyond the WS radius but has an oscillatory behavior
there due to the presence of the Friedel terms in the quantum
expression for the first-order electronic density. Again as in
the TF case, Eq. �95� is the last of the system of the SCF
variational equation in the QAA case that should allow one
to calculate the average electron density n0. It would prob-
ably be difficult to say at which condition the SCF equations
for the quantum average atom in plasma may have a rigorous
solution with the left-hand side of Eq. �95� equal to zero. We
have only shown that the variational approach to QAA in
plasma requires the ionization model of Eq. �38�, which in
turn leads to the system of equations obtained in this section.

We have seen that in the case of the Thomas-Fermi ap-
proximation, Eq. �48� leads to the usual neutrality condition
of the Wigner-Seitz sphere that allows one to find the chemi-
cal potential. It can be shown that we can rewrite Eq. �95� in
the form similar to the usual condition for the chemical po-
tential

4��
0

RWS

dr r2n�r� = Z + �Z , �96a�

with

�Z = 2RWSVel�RWS� −
4�

RWS
2 �

R

�

dr r4�n�r� − n0� . �96b�

However, from a practical point of view it appears that the
calculation of the “correction term” �Z is difficult numeri-
cally since for large r the r4 factor could amplify errors in the
numerically calculated density difference.

E. Pressure calculation in the quantum average atom
in plasma

Again we calculate pressure from the standard thermody-
namic definition,
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P = ni
2
 �FQAA

�ni



T=const
= ni

2� ��QAA

�ni
�

explicit
. �97�

Immediately we get from Eqs. �62� and �94�,

P = �− f0�n0,T� + 
n0�	n0=n0,eq,
=
eq

= 	
− f0
�0��n0;T� − fxc�n0� + n0��0�n0;T� + vxc�n0�

+ e2Vel�RWS���	n0=n0,eq
, �98�

where the index “eq” means that the corresponding quantity
is taken at equilibrium. Again, as in the TF case we get an
equation formally similar to the one of an ideal gas except
that in Eq. �98� there is a direct contribution of exchange and
correlation in the form fxc�n0,eq ;T�−n0,eqvxc�n0,eq�. There is
also an additional term due to the fact that Vel�RWS� is, in
general, nonzero thus instead of the chemical potential �0
appears the electrochemical potential �0+e2Vel�RWS�.

VI. SUPERCONFIGURATIONS IN PLASMAS

We will now consider the superconfigurations in jellium.
Superconfigurations have been introduced by Bar-Shalom et
al. �4�. This approximation allows one to describe statistical
properties of bound electron configurations in ground and
excited ions. The superconfigurations in the presence of
plasma screening have been proposed in Ref. �5� �see also
Refs. �6,22��. The main idea of the superconfiguration ap-
proximation is to group ions according to their bound-
electron occupation numbers of one-electron shells. The su-
perconfigurations contain the so-called supershells, i.e.,
groups of shells that are close in energy �in terms of the
thermal energy equal to T�. The total number of bound elec-
trons in each supershell is an integer. In such a way each
superconfiguration can represent a large number of ordinary
configurations �for details see Refs. �4–6,22��. In our varia-
tional approach to superconfigurations in plasma we will use
first-order potentials and occupation numbers as variational
variables and apply similar methods as in the approach to the
QAA case �see Sec. V�.

The first-order correction to the free energy will involve
all the superconfigurations that are included in the plasma
model. As concerns the notations the superconfigurations are
numbered by the index �, which defines the structure of its
bound electron population. Each superconfiguration is de-
fined by an ensemble of supershells 
����. We thus have

s���, where s are ordinary shells.

A. Free energy of superconfigurations in plasmas

The superconfiguration � has Q�
��� electrons on the super-

shell �. There will be the following constraints on the bound
shell occupation numbers:

2�
s��

ns
��� = Q�

���. �99a�

The total number of bound electrons of the superconfigura-
tion � is

�
���

Q�
��� = Q�. �99b�

We assume that each superconfiguration � in the plasma is
also characterized by a local SCF potential V�. This potential
has bound and free states. We denote the bound and free
wave functions of V� as �s

����r��, where s�B���, the bound
spectrum of �, and �

k�
����r��, respectively. The bound eigenen-

ergies of � are denoted as 	s
���. Each superconfiguration has

a cavity the radius of which will depend on the index �. The
first-order electron density now depends on � and is locally
different from densities of other superconfigurations,

n��r�� = 2�
s�B

ns
���	�s

����r��	2 +
2

�2��3 � d3k nk
���	�k�

��r��	2.

�100�

For large r all densities n��r�� tend to the same asymptotic
value that is equal to the average zero-order density n0.

The free energy of � is of the form

�F�„n0,
ns
���,s � B����,
nk

���,k � F�,V��r��,R�;ni,T,Z…

= �F�
�0� + �F�,el + �F�,xc, �101�

where

�F�
�0� = 2�

s�B
�ns

��� � d3r�s
���*�r���−


2

2m
�� 2�s

����r��� − TSs�
+�d3r

2

�2��3�d3k��nk�
�����k�

���*�r���− 
2

2m
�� 2�k�

����r����
− TSk

���	�k�
����r��	2� − f0

�0��n0�� , �102a�

�F�,el =� d3r��n��r�� − ��r − R��n0��−
Ze2

r

+
e2

2
� d3r�

�n��r��� − ��r� − R��n0�
	r� − r��	

�� ,

�102b�

�F�,xc =� d3r�
fxc�n��r��� − fxc�n0�� . �102c�

The contribution of all superconfigurations to the first-order
free energy is given as

�F1„n0,
W��
ns
���,s � B����,
nk

���,k � F�,


V��r���,
R��;ni,T,Z… = �
�

W���F� + T ln�W��� ,

�103�

where W� is the normalized probability of the superconfigu-
ration �. One has

� W� = 1. �104�

An entropy term corresponding to the distribution of W� has
been added in Eq. �103� �see, for instance, Ref. �17��.
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B. Thermodynamic potential in the case of superconfigurations
in plasma

In order that all SCF potentials V��r�� be local one has to
require for each superconfiguration the neutrality condition

Z −� d3r�n��r�� − n0� −
4�R�

3 n0

3
= 0. �105�

In the ionization model one generalizes Eq. �38� to the case
of superconfigurations,

n0

ni
= Z − �

�

W�� d3r�n��r�� − n0� . �106a�

Let us note, however, that

� d3r�n��r�� − n0� = �
���

�
s��

ns
��� +� d3r„n�,free�r�� − n0…

= Q� +� d3r„n�,free�r�� − n0… , �106b�

with the definition

n�,free�r�� =
2

�2��3 � d3k nk
���	�k�

��r��	2. �106c�

Substituting Eq. �106a� into Eq. �105� one gets immediately

ni =
1

4�R̄3
, �107�

where the average radius is defined as

R̄ = ��
�

W�R�
3 �1/3

. �108�

The thermodynamic potential of the first order takes the form

��1„n0,
W��,
ns
���,s � B����,
nk

���,k � F�,
V��r���,
R��;ni,T,Z…

= �
�

W���F� + T ln�W��� − B��
�

W� − 1� − 
�n0

ni
− Z + � W�� d3r�n��r�� − n0��

− �
�

���Z −� d3r�n��r�� − n0� −
4�R�

3 n0

3
� − �

�
�

���

��
�����

s��

ns
��� − Q�

���� . �109�

C. Variational calculation in the superconfiguration case

Again since the zero-order F0 term depends only on the
variable n0 the SCF equations of the superconfiguration
model are to be obtained from the first-order equations

���1

�V��r��
= 0,

���1

�ns
��� = 0,

���1

�nk
��� = 0,

���1

�R�

= 0,
���1

�W�

= 0, �110�

for all �, all s�B���, and all k. From Eqs. �105� and �106a�
one gets immediately,

n0

ni
= Z − �

�

W��Z −
4�R�

3

3
n0� =

4�R̄3

3
n0. �111�

The first of Eqs. �110� leads to a result similar to the one in
the QAA case,

���1

�V��r��
=− 2e4W� �S�

a�B���,F
�S�

b�B���,F
�na

��� − nb
���

	a
��� − 	b

�����V�,ab�a
����r��

��b
���*�r�� − 2e2W�� d3k

�2��3 	�k�
����r��	2

�nk
���

�	k
�̃k

���,

�112a�

where

�̃k
��� = 	k

��� + ��n0� − 
 + T ln� nk
���

1 − nk
���� +

1

W�

��,

�112b�

�V��r�� = V��r�� − Vel,��r�� +
1

e2 
vxc�n��r�� − vxc�n0�� ,

�112c�

and

Vel,��r�� =
Z

r
−� d3r�

�n��r��� − ��r� − R�n0�
	r� − r��	

.

Again as in the QAA case �see Sec. V� the nondiagonal terms
lead to
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�V��r�� = 0, �113a�

and the diagonal term to

�̃k
��� = 0 �113b�

that gives

	k + vxc�n0� − 
 + ln� nk
���

1 − nk
���� +

��

W�

= 0, �114a�

and

nk
��� =

1

exp���	k + �xc�n0� − 
 +
��

W�

�� + 1

.

�114b�

From the condition that n��r�� should tend for large r to the
average electron density n0 we write

nk
��� = nk

�0� =
1

exp���	k − �0�� + 1
, �114c�

and get

�0 = 
 − �xc�n0� −
��

W�

. �114d�

The second equation of Eqs. �110� leads to

���1

�ns
��� = W��2�̃s

��� + 2e2� d3r	�s
����r��	2�V��r��� = 0,

�115a�

with

�̃s
��� = 	s

��� + vxc�n0� − 
 + ln� ns
���

1 − ns
���� +

��

W�

−
1

W�

��
���,

�115b�

and gives

�̃s
��� = 0. �115c�

As in the QAA case with the ionization model Eq. �38� the
third equation of Eqs. �110� does not provide any additional
result. These equations are fulfilled automatically with the
expressions for free-electron occupation numbers that are ob-
tained from the first equation of Eqs. �110� and are displayed
in Eqs. �114�. The fourth equation of Eqs. �110� leads to

����

�R�

= − W�4�R�
2 n0e2Vel,��R�� + ��4�R�

2 n0 = 0,

�116a�

and gives

e2Vel,��R�� =
��

W�

. �116b�

From Eq. �114d� we see that the quantity �� /W� is indepen-
dent on �. Let us denote

e2V̄el =
��

W�

. �116c�

In such a way, Eqs. �116b� and �111� allows one, in principle,
to determine all R� from the equation

Vel,��R�� = V̄el for all � . �116d�

From Eqs. �115b� and �114d� we get for the bound occupa-
tion numbers,

ns
��� =

1

exp���	s
��� − �0 −

��
���

W�

�� + 1

. �116e�

The Lagrange multipliers ��
��� have to be determined from

Eq. �99a�.
The fifth equation from Eqs. �110� gives

���1

�W�

= �F� + T ln W� + T − B − 
�� d3r�n��r�� − n0��
= 0. �117a�

It can be transformed introducing a useful notation,

� d3r�n��r�� − n0� = Z −
4�R�

3

3
n0 = Z −

n0

ni
��� = Z − Z�

* � Q̃�.

�117b�

From Eq. �117a� and �117b� one gets

W� = A exp�− ���F� − 
Q̃��� , �117c�

where

A =
1

�
��

exp�− ���F�� − 
Q̃����
, �117d�

and


 = �0 + vxc�n0� + e2V̄el. �117e�

The constant B is equal to

B = T�1 − log��
��

exp�−
1

T
��F�� − 
Q̃������ .

�117f�

The last variation is that with respect to n0 and involves
both the zero and the first-order terms. The calculation is
similar to the one in the QAA case. One shall have
�� /�n0=0 that reads
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1

ni

�

�n0
�f0

�0��n0;T� + fxc�n0�� +
�

�n0
��1„n0,
W��,
ns

���,

s � B����,
nk
���,k � F�,
V��r���,
R��;ni,T,Z… = 0.

�118a�

One obtains similarly as in the QAA case �see Eq. �95��


��F�

�n0



V��r��,ns
���,nk

���=const

=� d3r���n��r��
�n0

− 1���0 + vxc�n0��

+ ��r − R��e2Vel,��r��� , �118b�

and finally,

�

�n0
� =

�0 + vxc

ni
+ �

�

W�

�F�

�n0
− 
� 1

ni
+ �

�

W�� d3r��n��r��
�n0

− 1�� − �
�

���−� d3r��n��r��
�n0

− 1� −
4�R�

3

3
�

=
�0 + vxc − 


ni
+

��

W�
�
�

W�

4�R�
3

3
− �

�

W����F�

�n0
− 
 +

��

W�
� � d3r��n��r��

�n0
− 1��

=
�0 + vxc − 
 + e2V̄el

ni
+ �

�

W����0 + vxc�n0� − 
 + e2V̄el� � d3r��n��r��
�n0

− 1�� + �
�

W�� d3r��r − R��Vel,��r�� = 0.

�118c�

Using Eq. �117e� this is reduced to

�
�

W�� d3r ��r − R��Vel,��r�� = 0. �118d�

Equation �118d� is the last equation of the variational system
in the case of superconfigurations. It allows one to find in a
self-consistent way the average electron density n0.

D. Pressure calculation in the superconfiguration case

One uses the standard identity in the superconfiguration
case

P = ni
2
 �F

�ni



T=const
= ni

2� ��

�ni
�

explicit
�119a�

that leads immediately to the following expression for the
thermodynamic pressure:

P = ni
2
�−

1

ni
2 �f0

�0��n0;T� + fxc�n0�� + 

n0

ni
2�


n0=n0,eq,
=
eq

= 	
− f0
�0��n0;T� − fxc�n0� + n0��0 + vxc�n0� + e2V̄el��	n0=n0,eq

.

�119b�

VII. CONCLUSIONS

In this paper we propose a new variational approach to
atoms in plasmas. In plasmas that consist of one element
atoms having the atomic number Z the equilibrium and all
thermodynamic quantities are determined by three param-

eters: the temperature �T�, atom �ion� density �ni�, and Z. In
our approach we approximate the functional of the free en-
ergy per ion by the first two terms of the cluster expansion
with respect to the ion configurations. The zero-order term is
the free energy of a homogeneous electron gas �jellium� of
unknown density. The first-order term is the correction due to
one ion configurations. This correction is constructed accord-
ing to the scheme of the cluster expansion. It is given by the
spatial integral from a difference between two expressions of
the plasma free-energy density: the first is the nonhomoge-
neous free-energy density of the system ion+jellium and the
second is the free energy of the homogeneous electron gas
�jellium�, the same as that which stands in the zero-order
expression. The system ion+jellium takes into account the
interaction between the central ion and its surrounding
plasma. We have considered three approximations to this
first-order system: the Thomas-Fermi-atom-in-plasma �TF�,
the quantum average atom-in-plasma �QAA�, and the
superconfigurations-in-plasma �SCs�. A subtle point in the
first-order system is connected to the noncentral ions. These
are represented by a constant charge density of the value
equal to the zero order �or average� electron charge density
but of opposite sign except in a central cavity of unknown
radius where their charge density is zero. As concerns the
introduction of this cavity we follow the well-known Liber-
man’s Inferno model �9,10�. The cavity concept has also
been used in Ref. �12�. In fact the cavity representing non-
central ions corresponds to the simplest possible ion-ion
correlation function gii�r����r−R�, where R is the radius
of the cavity and is treated as a variational parameter. It is
well known that without a cavity there is no way to have a
realistic description of the screened central ion since the
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charge generated by bound states with the Friedel terms
alone cannot screen the nuclear charge Ze. The plasma
screening is due to both electrons and ions and cannot be
modeled without the noncentral ions. Thus even from the
practical point of view the cavity has to be included. As
concerns this point it is interesting that our variational ap-
proach leads to the following condition on the central ion
SCF potential: �d3r ��r−R�Vel�r��=0 �or its average in the
superconfigurations case�. This condition has never been ob-
tained in previous variational approaches �9,10,12�. It allows
one, in principle, to determine the average electron density.
The variational procedure in our approach in some sense
“tries to repair” the default in the cluster expansion due to
the presence of the cavity: we get from this procedure that
the noncentral ion charge distribution should not interact
with the screened SCF electrostatic potential Vel�r�� created in
the vicinity of the central ion. Our statement concerning
“two first terms of the cluster expansion” should be under-
stood in this sense.

The condition allowing one to determine n0 is the result of
the main idea of our variational approach. We minimize the
sum of the zero- and the first-order contributions to the free
energy per ion while in previous approaches the minimiza-
tion procedure involved only the first-order contribution to
the free energy per ion. In our approach the zero-order term
is included and n0 is treated as a supplementary independent
variable along with all other variables describing the central
ion structure. In such a way our approach is fully variational:
the equilibrium is found from the fact that free energy per
ion is stationary with respect to all functions and variables
except the parameters T, ni, and Z. That has not been the case
in the mentioned previous approaches in which n0 is deter-
mined from a supplementary nonvariational condition �as the
neutrality of the Wigner-Seitz sphere in the Inferno ap-
proach�. The presence of a supplementary nonvariational
condition is the cause that previous approaches are not fully
variational. This nonvariational character has its impact on
the equation of state. In a nonvariational approach, besides
the fact that the procedure does not guarantee that the equi-
librium state is correctly constructed, the expression for the
electronic pressure also becomes complicated and requires in
practice a numerical differentiation. The nonvariational char-
acter of the previous approaches is at the origin of the fact
that they do not respect the virial theorem.

In our approach the inclusion of the zero-order term de-
pending on an average unknown electron density n0 requires
that we supply the model with a relation between n0 and the
first-order functions and variables describing the central ion.
We call this relation the “ionization model.” We have
checked that the correct ionization model in the case of the
Thomas-Fermi expressions for the free energy is the relation
n0 /ni=Z−�d3r�n�r��−n0�, where n�r�� is the total first-order
electron density. With this ionization model the TF version of
our variational approach leads to SCF equations that appear
to be identical with the classical TF ion-in-cell model at the
finite temperature first considered in Ref. �1�.

In the case of the quantum average atom in plasma and of
the superconfigurations in plasma one can, in principle, argue
that the ionization model could be different. For instance, the
presence of bound states in both these cases makes the fol-

lowing ionization model attractive: n0 /ni=Z−2�s�Bns,
where ns is the occupation of the bound state s. The latter
ionization model is not expressed by the first-order electron
density but depends only on the occupations of the bound
states. The density-functional theory �DFT� is not well suited
in such cases. In order to see what consequences may have
the choice of an arbitrary ionization model on our variational
approach we have proposed a variational procedure that goes
beyond the DFT. In this procedure presented in Sec. V in the
case of QAA and in Sec. VI in the case of SCs we do not
assume that the occupation numbers of the bound and free
states have the Fermi-Dirac form but can be arbitrary with
their form determined by the variational calculation. The re-
sult of the procedure is that the free-electron occupation
numbers should always be of the Fermi-Dirac form with the
same chemical potential as that connected to the average
electron density n0 of the zero order. As concerns the bound
state occupation numbers the choice of the latter ionization
model leads to the bound electrons having Fermi-Dirac sta-
tistics with chemical potential different from that of the free
electrons. That situation which cannot be accepted from the
physical point of view holds also in all ionization models
that do not depend on the electron density as a whole and
treat differently bound and free occupation numbers. We ar-
rive at the conclusion that one shall always choose the ion-
ization model that is a linear functional of the first-order
electron density. The ionization model n0 /ni=Z−�d3r�n�r��
−n0� is not only suitable in the Thomas-Fermi case but one
shall apply this model �or its average in the SCs case� in all
considered cases, i.e., also in two quantum cases �QAA and
SCs� considered in the present paper.

The ionization model is a condition that is to be respected
in the variational procedure. It enters the thermodynamic po-
tential with a Lagrange multiplier. Another condition is the
locality of the SCF potential that requires the respect of the
neutrality condition. In the TF and QAA case this neutrality
condition has the form Z−�d3r�n�r��−n0�−4�R3n0 /3=0. In
the case of SCs the same condition holds for every SC. The
consequence of the ionization model and the neutrality con-
dition is that the radius R �or its average in the SCs case�
becomes the Wigner-Seitz radius.

The consequence of the fully variational character of our
approach is a simple expression for the thermodynamic pres-
sure that is obtained from the explicit dependence of the
thermodynamic potential with respect to the ion density ni.
As obtained first in Ref. �1� in the TF case we get the clas-
sical EOS P=−f0(n0�T ,ni ,Z�)+n0�T ,ni ,Z��0�T ,ni ,Z�,
which is formally identical to that of the ideal quantum elec-
tron gas except that the average free electron density �or
chemical potential� is to be determined from the TF nonlin-
ear equation. In the QAA and in the SCs cases we get similar
simple EOS expressions except that instead of the chemical
potential entering the sum �0+e2Vel�R� it is the electro-
chemical potential at the WS radius, and a correction addi-
tionally appears due to the exchange-correlation free energy.

In the case of the SCs, instead of �0, �0+e2V̄el enters and
appears a similar exchange-correlation contribution. In the
latter case there is also an additional requirement that the
electrochemical potential at the cavity radius be the same for
each SC.
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The virial theorem in our model is respected provided the
exchange-correlation free energy scales according to the
similarity rules established in Ref. �1� �see Sec. II�. This is
the case with the exchange-correlation free energy from Ref.
�16�. However, since the direct EOS expression for the ther-
modynamic pressure we get is very simple, there is no need
to write or use the explicit form of the virial theorem. This
explicit form may be complicated due to the fact that the
exchange-correlation free energy depends both on the tem-
perature and on the charge square e2.

In conclusion, we believe that our new approach provides
a formally correct solution to a long-standing classical prob-
lem in the quantum plasmas: how to find the correct fully
variational self-consistent equilibrium of atoms immersed in
plasmas in which free electrons are treated quantum me-
chanically. Our approach allows one to answer practically all
questions related to this problem and to better understand
previous approaches to the problem. Our next step will be
the development of appropriate numerical schemes based on
the present theory that will be implemented in numerical
codes. The models of the Thomas-Fermi atoms, of the quan-
tum average atom as well as of the detailed configurations or
superconfigurations in plasma, are often used in numerical
codes for the dense plasma experiments and calculations
�see, for instance, Refs. �23–27��; so our theoretical results
published here can be interesting for the dense plasma phys-
ics community working on an interpretation of laboratory
experiments and involved in various dense plasma and astro-
physical modelings.
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APPENDIX A: PRESSURE FORMULA FROM FULLY
VARIATIONAL FORMULATION

From the variational Eq. �10�, and from the definition of
the thermodynamic potential Eq. �7�, we have at the equlib-
rium,

�F

�X
= �

j=1,J
� j

�Cj

�X
. �A1�

In the pressure formula Eq. �11�, we have to calculate the
derivative � /�ni of the free energy per ion with respect to the

ion density. At the equilibrium the free energy depends only
on ni, T, and Z. The derivative with respect to ni at a constant
temperature and atomic number is thus


�F�Xeq�ni,T,Z�;ni,T,Z�
�ni



T,Z

.

The total dependence of the free energy with respect to the
ion density includes the dependence through the values of all
the variables at equilibrium and the explicit dependence of
the free-energy functional on the ion density. We thus have

�F

�ni
= 
��
�F

�X
�X;ni,T,Z�


X=Xeq�ni,T,Z�
���Xeq�ni,T,Z�

�ni
�

+ � �F

�ni
�Xeq;ni,T,Z��

explicit
�


T,Z=const

= 
��
j

� j�
�Cj

�X
�X;ni,T,Z�


X=Xeq�ni,T,Z�
��Xeq�ni,T,Z�

�ni

+ ��F�Xeq;ni,T,Z�
�ni

�
explicit

�

T,Z=const

= 
�
j

� j��Cj„Xeq�ni,T,Z�;ni,T,Z…

�ni

− ��Cj�Xeq;ni,T,Z�
�ni

�
explicit

�

T,Z=const

+ 
��F�Xeq;ni,T,Z�
�ni

�
explicit



T,Z=const

= 
����Xeq;ni,T,Z�
�ni

�
explicit



T,Z=const

. �A2�

We have used the fact that the total derivative
	�Cj /�ni	T,Z=const=0 since Cj =0 throughout the minimization
procedure. The last term on the RHS of Eq. �A2� means the
derivative with respect to the explicit dependence of the ther-
modynamic potential on the ion density with all variables
taken at their equilibrium values at a constant temperature
and atomic number.

APPENDIX B: ON THE EQUIVALENCE OF OUR MODEL
IN THE TF CASE AND THE ION-IN-CELL TF MODEL

OF REF. [1]

We argue �18� that the variational solution of our model
with the TF approximation to �F1 is identical to the solution
to the TF ion-in-cell model of Ref. �1�. The solution of our
model with the TF approximation for �F1 leads to Eqs. �30�,
�31�, �46�, �47b�, and �48�. Equation �48� is equivalent to a
Poisson equation and since the potential and density are
spherically symmetric this equation can be written as

1

r

d2

dr2 �re2V�r�� = 4�e2�n�r� − ��r − RWS�n0� , �B1�

with the boundary conditions
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V�r� →
r→0

Z

r
�B2�

and

V�r� →
r→�

0 �B3�

sufficiently fast due to the neutrality condition Eq. �37�.
As results from Eqs. �30� and �31�, the TF first-order elec-

tron density is a nonlinear function of the potential V�r�,

n�r� =
2

�2��3 � d3k
1

exp
��	k − e2V�r� − �0�� + 1
, �B4�

where the chemical potential �0 is related to the average
zero-order density n0,

n0 =
2

�2��3 � d3k
1

exp���	k − �0�� + 1
. �B5�

We show in this Appendix that the TF ion-in-cell model of
Ref. �1� is identical to our variational solution, as expressed
by Eqs. �B1�–�B5� and �48�.

We have to show that from Eqs. �B1�–�B5� and �48� it
follows that

V�r� = 0 for r � RWS �B6�

and

n�r� = n0 for r � RWS, �B7�

which leads to the neutrality of the WS sphere.
The demonstration is based on the fact that the nonlinear

dependence of n�r� on V�r� is monotonic. In such a way both
these functions have extremes at the same values of r. The
electrostatic potential is equal to zero at infinity. Let us first
suppose that for the region of RWS�r��, V�r� has no ex-
treme. In such a case V�r� does not change sign in the whole
region outside the WS radius and should be zero in that
region in order to fulfill Eq. �48�. From the Poisson Eq. �B1�
we get in that case n�r�=n0 for r�RWS and the equivalence
holds.

Let us now suppose that the potential V�r� has extremes in
the region outside the WS radius. The monotonic dependence
of n�r� on V�r� implies that the asymptotic behavior of V�r�
has the form of a decaying exponential function of r. This
can be directly obtained from the linearized version of Eq.
�B1�. In such a way an eventual ensemble of points r�RWS,
where both n�r� and V�r� have extremes, is finite. Let us
denote this ensemble 
r1 ,r2 , . . . ,rM�, where rj �ri if j� i and
consider the integral

4�e2�
rM

�

dr r2�n�r� − ��r − R�n0� = e2�
rM

�

dr r21

r

d2

dr
�re2V�r�� ,

�B8�

where on the RHS the Poisson equation, Eq. �B1�, has been
used. Integration by parts leads to

4�e2�
rM

�

dr r2�n�r� − ��r − R�n0�

= 
e2r
d

dr
�rV�r��


rM

�

− �
rM

�

dr
d

dr
�rV�r��

= − r2e2 d

dr
V�rM� = 0. �B9�

Since n�r�−��r−R�n0 is a monotonic function of r vanishing
at infinity, Eq. �B9� implies that

n�r� = n0 for r � rM . �B10�

Using Eqs. �B10� and �B3� we find immediately that the
solution of Eq. �B1� in the region r�rM gives

V�r� = 0 for r � rM . �B11�
Similar reasoning can be repeated for each of the regions:
�rp ,rp+1�, �rp+1 ,rp+2� , ¯ , �rM−1 ,rM�, where rp denotes the
last of the points 
r1 ,r2 , . . . ,rM� that is larger than the WS
radius RWS. Finally, for the region �RWS ,rp� we have from Eq.
�48�: �RWS

� dr r2V�r�=�RWS

rp dr r2V�r�=0 and, again, since V�r�
does not change sign in the last region, it should be there
identically zero and, due to Eq. �B1�, we have there n�r�
=n0.

We get in this way Eqs. �B6� and �B7�. These equations
lead to the neutrality of the WS sphere. This can be imme-
diately seen, for instance, by the substitution of Eq. �B10�
into the ionization model, Eq. �38�. We get

n0

ni
=

4�R3

3
n0 = Z −� d3r�n�r�� − n0�

= Z − �
r�R

d3rn�r�� +
4�R3

3
n0. �B12�

The term involving n0 disappears on both sides, however, we
are left with the usual Thomas-Fermi-cell neutrality equation

�
r�R

d3rn�r�� = �
r�R

d3r
2

�2��3 � d3k
1

e��	k−e2V�r��−�0� + 1
= Z ,

�B13�
which allows one to find �0.

APPENDIX C: DERIVATION OF EQS. (64) AND (67)

The perturbation theory �21� provides the following iden-
tity:

��a�r���
�V�r��

= e2�
r�s

�r
*�r���a�r��
	r − 	a

�r�r���

+
1

�2��3e2� d3k�
�k��

* �r���a�r��

	k�� − 	a
�k���r��� , �C1�

with a=s or a=k�; and �s�r�� and �k��r�� being bound and free
wave functions, respectively, solutions to the Schrödinger
equations with the potential −e2V�r��. We note that the bound
contribution of the noninteraction part of the free energy is of
the following form with Ss independent on the potential V�r��:
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�F1,0
�b� = 2�

s�B
�ns� d3r�s

*�r���−

2

2m
�� 2�s�r��� − TSs�

using Eq. �C1� and the Schrödinger equation, Eq. �57�, we
get

��F1,0
�b�

�V�r��
= 2e4�

s�r

ns��r�r���s
*�r��

	r − 	s
Vrs +

�r
*�r���s�r��
	r − 	s

Vrs
* �

+ 2e4� d3k�

�2��3�
s

ns��k���r���s
*�r��

	k� − 	s
Vk��s

+
�k��

* �r���s�r��

	k� − 	s
Vk��s

* � . �C2a�

Changing the names of the integration variables we can write
Eq. �C2a� in a more compact form,

��F1,0
�b�

�V�r��
= − 2e4�

s�r

ns − nr

	s − 	r
�r�r���s

*�r��Vrs. �C2b�

Similarly, we get for the free electron part of the noninter-
acting free energy,

�F1,0
�f� = 2� d3k

�2��3 � d3r��k�
*�r���nk�−


2

2m
�� 2�k��r���

− TSk�k��r��� − f0
�0�� , �C3�

where now the entropy term is multiplied by the free particle
term 	�

k�
�r��	2. As said before the convergence of the space in-

tegral in Eq. �C3� is guaranteed by Eqs. �58a� and �58b�. We
get

��F1,0
�f�

�V�r��
= − 2e4�

r
� d3k

�2��3�nk − nr

	k − 	r
��r�r���k�

*�r��Vrk�

− 2e4� d3k�

�2��3 � d3k

�2��3�nk − nk�

	k − 	k�
��k���r���k�

*�r��Vk��k�

− 2e2� d3k�

�2��3 � d3k

�2��3�k���r���k�
*�r���2��3��k� − k���

��	k�nk − nk�

	k − 	k�
� − T�Sk − Sk�

	k − 	k�
�� . �C4�

Summing up the above results we write

��F1,0

�V�r��
= ���F1,0

�V�r��
�

1

+ ���F1,0

�V�r��
�

2

, �C5�

where

� �F1,0

�V�r��
�

1

= − 2e4 �S�
a�B,F

�S�
b�B,F

�na − nb

	a − 	b
�Vab�a�r���b

*�r�� ,

�C6�

� �F1,0

�V�r��
�

2

= − 2e2�
0

� dk

�2��3�
0

�

dk� k�2��k − k��
k�2

��	k�nk − nk�

	k − 	k�
� − T�Sk − Sk�

	k − 	k�
�� � d�̂k� � d�̂k��

����̂k� − �̂k����k���r���k�
*�r�� . �C7�

Using 	k−	k�= �
2 /2m��k−k���k+k��, �m /
2��1/k��� /�k�
=� /�	k and the identity −T�Sk /�	k= ��nk /�	k� ln�nk / �1
−nk��, we transform Eq. �C7� as follows:

� �F1,0

�V�r��
�

2

= − 2e2�
0

� dk

�2��3 	�k��r��	2
�nk

�	k
�	k + ln� nk

1 − nk
�� .

�C8�

We have also to calculate

��F1,1 + F1,xc�
�V�r��

= −� d3r�†e2Vel�r��� − 
vxc�n�r����

− vxc�n0��‡
�n�r���
�V�r��

+ vxc�n0� � d3r�
�n�r���
�V�r��

= −� d3r��e2V�r��� − vxc�n0��
�n�r���
�V�r��

, �C9�

and the terms coming from the general form of the ioniza-
tion, model, Eq. �56c�,

�Zb„n0,n�r��,
ns�,
nk�…
�V�r��

=� d3r���Zb„n0,n�r��,
ns�,
nk�…
�n�r���

− 
 �Zb„n0,n�r��,
ns�,
nk�…
�n�r���



n�r���=n0

��n�r���
�V�r��

+ 
 �Zb„n0,n�r��,
ns�,
nk�…
�n�r���



n�r���=n0

� d3r�
�n�r���
�V�r��

=� d3r�
HZb
�n�r��� − HZb

�n0��
�n�r���
�V�r��

+ HZb
�n0� � d3r�

�n�r���
�V�r��

. �C10�

In such a way when calculating the variation of terms other than �F1,QAA
�0� /�V�r�� in ��QAA /�V�r�� along the lines as in Eqs.

�C2�–�C8� we can treat together the term
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� d3r�†V�r� � � − 

HZb
�n�r� � �� − HZb

�n0�� − vxc�n0� − 
HZb
�n0�‡

�n�r���
�V�r��

. �C11�

The operator in the integral of Eq. �C11� is Hermitian and the RHS of Eq. �C11� is similar to the kinetic energy and entropy
term from Eqs. �C5�–�C7�. In such a way we can repeat in Eq. �C11� all the steps used in the derivation of Eqs. �C5�–�C7� and
obtain finally Eq. �65�.
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